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Symmetric linear systems: an application of algebraic
systems theoryt

M. HAZEWINKEL} and C. MARTIN§||

Dynamical systems which contain several identical subsystems occur in a variety
of applications ranging from command and control systems and discretization of
partial differential equations, to the stability augmentation of pairs of helicopters
lifting a large mass. Linear models for such systems display certain obvious
symmetries. In this paper, we discuss how these symmetries can be incorporated
into a mathematical model that utilizes the modern theory of algebraic systems.
Such systems are ¢nherently related to the representation theory of algebras over
fields. We will show that any control scheme which respects the dynamical structure
either implicitly or explicitly uses the underlying algebra.

1. Introduction

Linear models of dynamical controlled systems have always been the
central tool of the control engineer, and yet linear control theory has received
more criticism than almost any other area of control theory. The criticisms
include the point that nature is rarely linear to the point that the usual design
procedures for feedback gains often completely obliterate the original dynamics
of the system. The philosopher and engineer, G. Allen Smith (1981) has com-
plained that control theorists think they could make a rock soar like an eagle
if there was just a way to implement large enough gains. It is partially
toward this criticism that this paper is addressed.

Often, dynamical systems are composed of several independently controlled
systems interacting through some fixed structure. The structure, physical
or informational in nature, is often beyond the influence of the individual
controllers, or may be modified in only specific ways. To attempt to imple-
ment control procedures that violate the constraints is not acceptable. In
this paper, we consider three examples of such systems and given suitable
linear models. The three examples are taken from the diverse areas of aero-
nautics, command and control systems and numerical analysis and are only
representation examples.

The example from aeronautics is the problem of stability augmentation
of a pair of helicopters lifting a mass that is beyond the performance capabilities
of a single helicopter. The model displays dynamical symmetries that must
be respected and there are design constraints imposed by pilot workload
considerations. The command and control model is loosely adapted from
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one level of a heirarchical model proposed in various presentations at the
special sessions on C? systems at the 1980 Conference on Decision and Control.
The main features are that there are several control units representing units
in a fleet action that are sharing information through fixed communication
channels. There are limitations to the number of channels because of transfer
of information rates and security requirements. Again control decisions must
respect the underlying information structure and the inherent limitations of
human command teams to assimilate information and to react with rational
command decisions.

The third example comes from the very complete paper of Brockett and
Willems (1974) on the discretization of partial differential equations. Their
discretization procedure results in a linear system in which the state matrix
is a block cyclic matrix and the control matrix has a compatible block struc-
ture. Any feedback must preserve the cyclic structure of the state matrix
if the resulting system is to represent the discretization of a partial differential
equation.

These three models have the shared feature that there is an underlying
structure that is inherent to the system. In this paper, we develop tools
from algebraic systems theory that can be used in the analysis and design
of such systems. In Martin (1982), the concept of systems with symmetries
is developed from an extrinsic viewpoint. In Hazewinkel and Martin (1983),
the concepts are extended and the mathematics is developed from an intrinsic
viewpoint. The basic idea is that the concept of symmetry can be given a
precise definition in terms of the theory of real and complex finite dimen-
sional algebras. We show that such systems can be regarded as systems over
algebras (or rings) and that in this context the constraint of structural
preservation is simply the usual requirement that operators (gain matrices,
state and control matrices, etc.) are algebra homomorphisms. Thus all of
the methodology that has been developed for algebraic system theory can be
applied to develop a comprehensive theory of systems with structural
symmetry.

In addition, a sizeable collection of mathematical results can be brought
to bear on system theoretic questions arising from the somewhat diverse area
of decentralized control. The underlying algebraic structure serves as a
unifying concept for the many diverse applications.

2. Three applications ‘
2.1. The twin lift concept

The moving of loads with helicopters is a reasonably routine problem in
commercial and military applications as long as the loads are small. For
the last thirty years, there has been a steady increase in the effective payload
that can be manoeuvred. However, this increase in payload has been at the
expense of larger and more expensive helicopters. The Sikorski CH-53E is
a typical large helicopter and has an effective payload of approximately
40 000 Ibs. A significant increase in the payload can only be achieved by
the construction of yet larger and more expensive aircraft. The problems
involved in the design and maintenance of such large aircraft are well docu-
mented (Carter ef al. 1979). The conclusion drawn is that there is an upper
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bound imposed on effective payload by physical and economic constraints.
However, there does not appear to be an upper bound on the loads that can
be moved by air. Thus the concept of attaching several helicopters to the
same load seems to be one of some practical importance. The problem has
been considered and flight tested in the case of two helicopters, often called
“twin lift °.  In Carter et al. (1979) there is a brief report of a flight test that
was performed by Sikorski Aircraft in the late 1960s. The main conclusions
were that the concept was viable but carried the penalty of a high pilot work-
load and a lack of manoeuvrability.

The system involved can be schematically modelled as in Fig. 1. The
helicopters are spread by a rigid bar and the attachment is by means of
cables. The length of the cables is an important parameter. The effect of

these and other parameters on performance is examined in Lewis and Martin
(1983).

H, H,
L, L, L,
Y 2.1
M
Figure 1.

If the mass is considered to be a point mass at the centre of the spreader
bar and the helicopters are modelled with linear dynamics, the overall system
model has the form

1 S O IR

where the helicopter dynamics are modelled by
z=Ax+ Bu (2)

and the matrix H represents the coupling between the two systems. The
matrix H contains the effects of such parameters as L; and L,. It is desirable
that any control scheme should preserve the basic structure of eqn. (1). The
local feedback of by u, and y by u, should be given the same gain matrix K,
both because of the desire to use all-purpose helicopters with identical avionics
and for reasons of pilot training. Additional coupling between the two
systems should be avoided, but if it cannot be, then it should preserve the
physical dynamics already present. As we shall see and as is already docu-
mented (Hazewinkel and Martin 1983), the problem of stabilizing without
additional coupling is very difficult even if possible.
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2.2, Discretized partial differential equations

Brockett and Willems (1974) considered the diffusion equation on a
circle
ox(t, 8) o%(t, 0)
o o

+u(t, §), 0<6<2n (3)

where 6 is the angular coordinate and 0<6<#. By discretizing in the
spatial domains, they arrived at an approximate ordinary differential equation

dz; 1
gf;t(t) T (241 (8) + ;o () — 2x,(8) ] + w,(8), v=1,...,p (4)
where
( 27 )
rt)=z|t —1
P

(5)

27

@ = —

p

Because of the periodicity of the spatial domain, k¥ and % + p are identified.

There is obviously special structure involved in eqn. (4), but it becomes
much more obvious when the equation is written in state space form. Still
following the development in Brocket and Willems (1974), we have the control
system

x,(t) -2 1 0 .. ] z.(¢) Uy

d : 1 : :

il | |m 1 -2 1 .0 AL (6)
"0 10 1 —2]|=,0 uy(2)

In their comprehensive treatment of such systems, Brockett and Willems
(1974) noted that the system matrices had a great deal of algebraic structure
and exploited the algebra to give a detailed analysis of such systems. They
based their work on two points: that the matrices are circulant matrices ;
and that circulant matrices are related to a ring of polynomials R[z] where
2P=1,

We will show that their results can be viewed in much wider context
and that most of their results hold. In particular, their ring is just a case
of a group ring over a cyclic group.

2.3. Command and control systems

The problems of command, control, communication and intelligence have
in the last few years received an increasing amount of attention from military
bodies because of the realization of vulnerability of the existing structures to
interference from hostile action. The control theorists have reacted with a
major effort to bring to bear on this broad class of problems the resources of
modern system analysis. The level of interest is reflected in the large number
of papers available (for example, I.E.E.E. 1980). It should be realized that
there are many types of problems encountered in command and control
network and a wide variety of modelling and analysis techniques are of valid
utility.
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Consider the problem of maintaining a formation of objects, be it ships,
aircraft or a satellite communication network. For discussion, take a fleet
of identical ships—perhaps destroyers protecting an aircraft carrier. There
is limited communication between individual ships and they receive general
commands as to heading and course from the carrier. For simplicity, assume
that there are four destroyers arranged at the corners of a rectangle and
communication is between adjacent ships as represented schematically in
Fig. 2. If the dynamics of the ships are modelled by

-i:i=Axi+Bui, 7:=1,...,4 (7)
a < > b
/ N\
231
4 A\ %
d <« o
Figure 2.

the overall model is given by

(2,1 [4 H H Hl|[x] [B 0 0 07][w]
Ty H A H Hl|ux 0 B 0 0/f|u
- - (®)
2y H H A H||ax 0 0 B 0]|ug
i | (# H H 4]l [0 0o o Bl|lu,

where the Hs represent the dynamic coupling induced by information
exchange. The structure involved is central to the system and should be
preserved. It may be necessary to modify the particular gains involved to
achieve a stable and manoeuvrable formation but additional feedback loops
would not be desirable. This linear model is such that it admits analysis of
the effect of removing a node which is representative of the loss of a ship.

3. Symmetry algebra

In this section, we derive the basic definitions and theorems from algebra
that are needed to study the systems described in § 2.  We will then associate
with every class of systems an algebra which we will call the symmetry
algebra. In Martin (1983) it was shown that systems could be associated with
certain algebrae and in Hazewinkel and Martin (1983) it was shown that
given a class, there is an implicitly associated algebra. Finally, we show
that the system can be reduced to systems over the algebra.

3.1. Algebrae and representations of algebrae

We will work over a field k& that can usually be assumed to be either the
field of real numbers R or as the field of complex numbers C. Later we will
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ve field of quaternions H. Let V be a finite
calars from the field £. By an algebra over a
field I we mean a vector space V equipped with a rr}ultlpllcatlon, which we
denote by juxtaposition that is distributive, associative and commutes with
scalar multiplication. That is, if xek and a, beV then

(xa)b =a(ab) =c(ab)

have need of the non-comutati
dimensional vector space with s

Standard examples are the complex numbers as a re_aal algebra, the set of all
n xn matrices, the algebra of polynomials in variables x, ..., z, and co-
efficients from k. Note that not every ring is an algebra b f(?r ez‘<ample, the
integers, while being a ring, do not admit a scalar multiplication by any
field. and the real numbers are not an algebra over the complex numbers.

A module M over an algebra A is a vector space 9ver k and is closed under
multiplication by elements of A. It is easy to think Qf an A—mod‘ule as a
vector space whose scalars are from A. However, thlS. can be misleading
because many standard vector space results are not valid, for example the
concepts of f)asis, dimension, inner products, etc. are not a%ways definable.
Let M, and M, be modules over A. A module homomorphism between M,
and M, is a linear map from M; to M, (considered as vector spaces over k)
that commutes with the multiplication by A. Let 7' be a linear map from
M, to M,, veM, and acA. Then 7' is a homomorphism if and only if

T(av)=a(Tv)

Likewise, a homomorphism of two algebras A and B is a linear map of the
underlying vector spaces that preserves the algebra multiplication.

A representation of an algebra A is an algebra homomorphism 7 from A
into the full matrix algebra gl(V) for some vector space V. Note that V can
always be considered as a gl(V) module and hence by the representation =
can be considered as an A-module.

We often refer to the representation (r, V) as the representation V and
denote 7(rjv as rv. A classical example of a representation in linear algebras
comes from considering the representation of R[x], the ring of polynomials,
in gl(V). Let A be a fixed element of g/(V) and define

T(p(@)v=p(4)
This representation was used to study a ‘a single linear transformation’
(Jacobson 1975).

We now recall some basic facts from representation theory. Let V be a
representation of an algebra R. A subspace W<V is a subrepresentation if
we W implies that rweW for all reR. A representation V is irreducible if the
only subrepresentations are 0 and V. An algebra R is semisimple if for
every representation V and every subrepresentation W there is a W’ that is
a subrepresentation and W@ W’'=V as vector spaces. This has a practical
interpretation in terms of matrices. If =: R—gl(V) is such that there exists
a matrix SeGl(V) and S-17(r)S is block upper triangular for all reR, then
there is a PeGl(V), the group of invertible lincar maps from V to V, such
that P~'7(r)P is block diagonal for all reR. The field k of scalars is not
important for the above. Standard examples of semisim ple algebrae include
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gl(V, R), gl(V, C), the quaternions and the complex numbers as algebrae over
R and the group algebra of any finite group (Serre 1977) over R or C.

One of the main theorems of representation theory is Schur’s lemma.
We recall here three special cases. Let V be a representation of R and let
Endy, (V) be the algebra of all R-homomorphisms of V into V. The cases
are as follows.

(1) Let R be an algebra over C and V an irreducible complex representa-
tion of B. Then Endg (V)=C.

(2) Let R be an algebra over R and V an irreducible real representation.
Then Endy (V)=R, C or H.

(3) If V and M are non-isomorphic irreducible representations of R,
then Hompy (V, M)=0 where Hompg (V, M) is the vector-space of R-
homomorphisms from V to M. (This is true for R and C).

3.2. Definition of symmetry algebra

Let gl(n, R) be the algebra of n x n matrices and let C be a class of systems
of state dimension » and input dimension m. Then the symmetry algebra of
C is defined by

R(C)={(8, T)egl(n, R)x gl(m, R) :
SF=FS, SG=QT, forall (F, G)eC}

Usually R(C) is uniquely determined by the projection into gi(n, R).
This happens if C contains a single system (F, &) with @ having full rank
for then SG'=GT determines 7' uniquely as a function of S. This does not
mean that R(C)={Segl(n, R) : SF=FS}.
Consider the examples from §2. The first example was the twin lift
helicopter. The class

A H B 0
C= , 1 4, H and B as defined
-H 4 0 B

The symmetry algebra is the set of (8, 7') such that

al, pl, aly, pln
S = N T =
~pl, ol, —pl,, ol,
and hence R(C) is a representation of R[7], the complex numbers as an algebra
over R.

The second example of Brockett and Willems (1974) has C as the class
of systems with the state matrix as a circulant matrix and the input matrix
the identity and hence E(C) is a representation of R[z] with z2?=1. For this
example, R[z] is also the group ring of C,,, the cyclic group of order p.

The third example has the set C described by eqn. (8) and since the model

is symmetric under all permutations of the four ships the symmetry algebra
is the group ring of the symmetric group on four letters, S,.
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The three algebrae of the examples are quite diverse but an algebraist
might see features shared by the three and for example, draw the conclusion
that all symmetry algebrae are semisimple. The following theorem shows
that no conclusions can be drawn about the general structure of symmetry
algebrae.

Theorem 1
Every finite dimensional associative algebra with identity occurs as the
symmetry algebra of some class of systems.

The proof of this theorem is contained in Hazewinkel and Martin (1983)
and will not be repeated here. The proof is similar to the proof that for a
“wild > quiver every algebra occurs as the endomorphism algebra (Hazewinkel
1976, Kleiner and Martin 1981). Thus the study of special classes of linear
systems with structure makes non-trivial contact with the theory of the
representation of algebrae.

3.3. Dimension reduction

Let R< Gl(n, R)x Gl(n, R) and consider the class of systems with special
structure R, state space R" and input space R™, via the imbedding B < M, (R) x
J,(R) they become (left) R-modules. Now let £=(d4, B)eC(R). Then
AS=84, SB=BT for all (S, T)eR which precisely means that 4 : R*—R?"
and B: R"—R" are R-module homomorphisms. Thus we can consider
T =(d, B)eC(R) as a system over the ring B. Of course, there is no guarantee
that the R-modules R* and R™ will be free R-modules.

However, as we shall see, especially if the ring R is semisimple, it may be
advantageous to consider a system in C(R) as a system over R. In particular,
if we are dealing with systems over C with special structure and R is semi-
simple then the theory of systems with special structure R is naturally equi-
valent to the theory of the usual linear systems over C. If we are dealing
with real systems and R is semisimple, then the theory of systems with
special structure R reduces to the union of the theory of ordinary real systems,
ordinary complex systems and linear systems over the (non-commutative)
field of the quaternions.

4. The theory of systems with semisimple symmetry algebra

We recall from § 3.1 that an algebra R is semisimple if and only if every
subrepresentation is complimented or in matrix terms if R is algebra iso-
morphic to a direct sum of algebrae R; with R, a complete matrix algebra
over some field. In this section, we first consider the simpler case when R
is a complex algebra and then the case that R is a real algebra.

4.2. Systems with complex semisimple symmetry algebra

Let C be a class of complex systems with complex symmetry algebra
Rcgln, C)xgl(m, C) and we assume that R is semisimple. Let (F, G)eC.
We let the state space C" and the input space C” be R-modules by the
embedding of R into ¢l(n, C)x gl(m, C). By the definition of the symmetry
algebra and § 3.3, we have that F and ¢ are R-module homomorphisms.



Symmetric linear systems 1379

We write C* and C™ as the direct sum of irreducible R-modules, i.e.

ny Ny ny,
- N I -\ ~ e e,
Cr=V,+...+Vi+Vo+.. .+ Vo+ .+ Vit .+,

my My my,

e A e
Cr=Wi+... + W+ Wt .+ Wt ...+ W, +..+ W,

Note that ¢ is an R-module homomorphism and hence ¢ : W,—C" and by
Schur’s lemma W, must be one of the Vs or G|W,=0. Thus, if we assume,
as is customary, that ¢ has full rank, then we assume without loss of generality
that W,=V, for 4=1,...,p. On the other hand, if (F, () is controllable
then we must have that p =k and we have then that

Cr=Vmt . + Vo
Cm —_ Vlml +... 4+ Vkmk

and that F and ¢ can be written as the direct sums

Fy 0
F={ -

0 F,

¢, 0
a=(

0 G

where F; is the restriction of ¥ to V% and G, is the restriction of G to V™.
Repeated applications of Schur’s lemma to the summand F; gives that
F; can be written as

fl,lI(li o flni‘ldi

/’ni,lldi fni,'ni'[di

where d; is the dimension of V; and f; , is a complex scalar. Letting ¥, = (f;;)
we then have the form for

Fi®l,, 0
F=
0 Fk®1(1k
A similar result holds for @ to give
GI ®Id| 0
(=
0 G.®1,,

Thus, F and ¢ can be reduced to the direct sum of ordinary complex linear
systems by a change of basis in state space that preserves the symmetry
algebra. All of the usual system theoretic questions concerning (¥, ) reduce
to questions over lower dimensional complex systems. We have proven the
following theorem.
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Theorem 2

Let R be a semisimple subalgebra of gl(n, C) x gl(m, C) and let (F, G) be
a system with symmetry algebra RE. Let (F,G,), ..., (F}, G}) be the sub-
algebrae constructed as above. Then the following conditions hold.

(1) (F, @) is controllable if and only if each (F, ¢;) is controllable.
(ii) The characteristic polynomial of F, C(F), is equal to
C(Fy=C(F)% ... O(F)%
(iii) (F, @) is stable if and only if (F;, ;) is stable for each 1.

The practical advantage of Theorem 2 is that it has reduced the theory
of a class of structured systems to the theory of ordinary linear systems with
complex coefficients. Thus, the question of what system theoretic operations
can be performed within the class C is answered.

4.3. Systems with real semisimple symmetry algebra

Most physical systems are modelled by models having real coefficients.
As we shall see, the theory of real systems is somewhat more complicated
than the theory of complex systems. But in the case when the symmetry
algebra is semisimple, much can be done.

As in §4.2, we consider R* and R™ as R-modules and decompose them
into the direct sum of irreducible R-modules. In this case, we get the following
decomposition

N

R ok
:81 Bp
A — e > (9)

0U,0..0U,0..0U,0..0U,

Y1 Vs
r——P— ——

oW, ®...0W,8...0W,0...0W, |

The Vs have the property, from Schur’s lemma, that Endj, (V,)=R; the
Us the property that End, (U,)=C; and the W;s the property that
Endg (W;)=H. By repeating the tedious arguments of § 4.2, using Schur’s
lemma repeatedly, we see that every system in C can be reduced to the
direct sum of ordinary real systems, ordinary complex systems and ‘ ordinary’
quaternion systems. Of course, it is not clear what an ordinary system with
quaternion coefficients might look like. The theory of such systems is
beyond the scope of this paper. We will assume in this paper that the
quaternion components of R® and R™ are not present. It seems to be not
well understood in the mathematical literature how to impose conditions on
the algebra R to force this assumption. Thus the theory of real systems
with semisimple structure algebra.reduces to the theory of ordinary real
systems and ordinary complex systems. The theory of quaternion systems
is left to a later paper.
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If R"—»R™ is a homomorphism of R-modules, it preserves the special
structure algebra R. It breaks up into a direct sum of feedback matrices

corresponding to real and complex ordinary systems. Thus we have the
following theorem.

Theorem 3

(i). (F, G) is stabilizable by special structure preserving feedback if and
only if all the real systems (F;, @), i=1, ..., k are stabilizable by real feed-
back and all the complex systems (F,,;, Gy.,), i=1, ..., p are stabilizable by
complex feedback. ‘

.(ii.) If (F, G) is completely reachable, then the coefficients of its charac-
teristic polynomial can be assigned arbitrarily by special structure preserving
feedback - subject to the sole condition that the characteristic polynomial
must be of the form )

DA™ . p(A) (g (NG (N)Pr .. (g, (N, (R))
degree (p;)=mn,;, degree (¢;)=n,,,;

Remark

If R=R[Z/(n)] the irreducible real representations of R (or equivalently
Z[(n)) are of course very well known. They are of dimension 1 or 2 and are
given by mapping the generator g of Z/(n) to an nth root of unity (interpreted
as a rotation through an angle 27n71). The corresponding decomposition of
a circulant matrix readily follows and using the results above all the results
;)f Brockett and Willems (1974) concerning block circulant systems readily
ollow.

Consider the structured system

%y 4 H\/[x By, B\ /[,
= +
<¢2) <"H A)(“l) (“Bl Bo)(“z)
with 4, H, B, and B, real matrices. This system is irreducible over the reals
and has structure algebra R[{]=C. Every irreducible component associated
with the complex part of the algebra has the above form over the reals. Thus
the theory of real structured systems with semisimple algebra reduces to
ordinary real systems and real systems with the above structure.

Systems of the above form have occurred in various problems in aerospace
technology (Sidar 1981). We see that their occurrence is not an accident
because that form will occur whenever there is special structure with semi-
simple algebra. In the three examples presented originally, the structure
algebra is semisimple in each case.

Tt is also worth noting that in a class of systems with semisimple structure
algebra, the linear quadratic methodology is applicable. Let P be the linear
transform that decompose the state space into the form of eqn. (9) and T
the linear transform that decomposes the input space. Let (4, B) be any
system in C. Then (PAP-', PBT) is the direct sum of complex systems
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and real systems. Each real system can be optimized by a cost criteria of

the form
oC

Jiu)= | @'Qu—u Ru
0

where @, and R; are positive hermitian forms. This translates to the real

representation as
( @ Qz)
Q1+
-@ @

where @, and @, satisfy only the condition that @, +i@), is positive hermitian
and R, satisfies a similar condition. Thus the system (PAP-!, PBT) can
be optimized by a cost function of the form
[e o]
Ju)= { 2'Qu+u Ru
0
where @ is of the form

Q. ]
Q
( Qll Q12>
- Q12 Qll

oy
L —Qp2 Qpl n

and the form of R is similar.
Hence in C the system (4, B) is optimized by

@©
Jw)= | ©’P'QPr+uwT RTu
0
This emphasizes the fact that if the structure algebra is semisimple, then the
standard algorithms may be used to effect modifications.

5. Decentralized stabilization

In this last section we present material that leads to an unsolved problem
that is of some difficulty yet has some interesting consequences.

Consider the problem of stabilizing the pair of helicopters described in
§2.1. As seen, this system can be considered as the complex system

i=(A+iH)z+ Bv (10)

The requirement that u, = Kx,;, and u,= Kz, then leads to requiring that the
feedback control law for eqn. (10) be of the form

u=Kz

In other words, we have a complex system which we wish to modify with
real feedback. Note that this is dual (collequially) to output feedback.
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Here we have a system over a ring and we are asking for control using
feedback that is restricted to a subring. The output feedback problem asks
for control using a quotient of the state space.

Heymann’s lemma applies to eqn. (10) to yield a new system

(H +3H + BL, Bug)

where L and wu, are complex, which is controllable and single input. It is
possible to show (Hazewinkel and Martin 1983) that there is a real L and a
real u, which also work. Thus we can assume that we have

i=(A+iH)z+bu (11)

which is controllable and single input. We can also assume without loss of
generality that (4, b) is in control canonical form, but we can make no
assumptions about H. We now prove the following lemma.

Lemma

If (A +¢H,b) is in control canonical form then there exists a real feedback
control law k such that A4 +4iH +bk’ is stable, and furthermore given any
real polynomial p()) there is a feedback control law £ and a positive number
e such that the roots of the characteristic polynomial of A+ iH +bk', are
asymptotic to the roots of p(A/e).

Proof
Let
0 1 1 0
A+iH= 0 1 |b=[0]=e,
—oy ... oy, 1

The «;s are of course complex. Let the characteristic polynomial of
A +iH —bk’ be

qA) = A"+ (o, + ) A1+ (o, g+ ) A2 4+ (g +Ky)
Let p(A)= A"+ B, A»1+ ...+ B, B,eR. Now we define k;=g,;t*~*1 and have
g, £) = A" (o + Bt A (2 + But™)

Factor out a factor of t* to yield
A n
q(A, t)=tr ((;) + (anft + B (A + ... + (ocl/t”-f-ﬁl))

Thus for ¢ very large the roots of g(A, t) are approximately the roots of
wh+ B+ L+ By

where w=A/t. Thus for ¢ very large and positive, the roots of g(A,t) are
asymptotic to the roots of p(A/t). This finishes the proof of the lemma.
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But now suppose that (4 +:iH, b) is not in canonical form. (We can still
assume that (4, b) is in canonical form). Then there is a complex matrix T

such that

0 1 0
T(A+iH)T-'= 0 1
—0y ... Oy

and Te,=e,.
If we use real feedback on the transformed system then we have

T(4 +iH)T-+ Tbk'

has the required poles but we see that the original system has been modified
by the complex feedback k'7-1. We are led then to the following question :
given a system in canonical form, does there exist a feedback control law of
the form &'T, T complex, k real that stabilizes the system?

The answer is yes if n=2. However, the problem seems quite difficult
if n=3. It should also be noted that in the case of helicopters the dimensions
of interest are n>27. From the Lemma we deduce that the above question
is equivalent to the following more simple question.

Given T complex, non-singular and Te, =e,, does there exist a real vector
k such that the polynomial

pA)=X+E T, A1+ +k'T,

is stable, where T'; is the ith column of 7'.
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